Exercise for pain - more about what you don't do?

Exercise for pain - more about what you don't do?

MicroBlog

Controlled trials of exercise for low back pain often suggest that the type of exercise doesn't matter.  And if you love "stability" exercises then these results can really challenge what you think and could even make us expert clinicians feel like we have less "special" knowledge...always challenging to be confronted with this.

Quick EMG Review: Training the rotator cuff trains the scapulothoracic muscles

I had a discussion with a Physio friend of mine about a blog he wrote championing performing scapular stability exercises before rotator cuff exercises.  Because I am bit of a picky bitch I immediately thought that while I can see the clinical rationale for it I don't think the muscles actually do this in practice and thus we had a respectable difference of opinion.  From some old EMG reviews I knew that some of the best exercises to train the lower traps (with out upper trap activity) were actually lame old rotator cuff exercises.  A couple of  years ago I made a few graphics that illustrated this (prompted by a similar discussion on Mike Reinold's blog). Below you will see that shoulder External Rotation (both at 90 degrees and at 0 degrees) are great scapulothoracic exercises.  So while, Jesse might have great success with training scapula before he trains the rotator cuff the explanation for this can probably be explained million other ways then the mechanistic idea that there is some deficit in scapulothoracic function that needs correcting.

Anyways, here are the pictures.  Please feel free to download them and use them in any patient education or other blog posts as you see fit.

1-full-can-with-numbers
1-full-can-with-numbers
1-prone-ER-at-90-degrees-down-with-numbers
1-prone-ER-at-90-degrees-down-with-numbers
1-prone-horizonal-abduction-at-130-degrees-unilateral
1-prone-horizonal-abduction-at-130-degrees-unilateral
1-prone-horizontal-abduction-unilateral-at-90-degrees
1-prone-horizontal-abduction-unilateral-at-90-degrees
1-sidelying-shoulder-IR
1-sidelying-shoulder-IR

Core stability and low back pain: How stability exercises might help. Part Two

brain-running-on-treadmill.jpg

In part one of this post I very simple reviewed some of the ideas behind core stability and how I questioned their relevance to a patient's pain presentation.  In this follow up post I will briefly review how people with pain have different function than those without pain and give an opinion on how core 'stability" exercises may help with patients in pain in a manner that has nothing to do with stabilizing the spine.

What do we know and what can we do with patients with low back pain

- some patients with low back pain show delays in Tranny firing

- this delay can be correlated with the presence of low back pain

- changes in muscle timing occur with perturbations to the spine

-improvements in pain and function can occur and have nothing to do with changes in firing onset (see here )

-changes in firing onset can occur and have nothing to do with a motor control retraining plan (see Gary Alison's recent work here which he has been trumpeting this idea for more than a decade, here and here)

- some clinical prediction rules help identify who best responds to a "spine stability program"

- I published two literature reviews years ago that outline how peoples spines function differently with pain (Here and here). The research shows those with pain have differently behaving muscles, changes in proprioception, differences spine kinematics and differences in how they move

But so what if there are changes in function?  Do we need to know this to make improvements in pain?

None of the research suggests that these differences occurred before the pain nor does any research suggest that changing these dysfunctional parameters is necessary for pain resolution.  We probably don't need to specifically address these changes in function with our treatment and most of us aren't.  From the above list there are at least 8 means that the spine is "dysfunctional" as measured with some advanced biomechanical testing.  All of us do not do these testing on our patients yet we are often able to make them feel better.  What does this tell you about advanced testing? It probably isn't necessary.  Or is the test that is most important just the one that your clinic happens to have access to (I'm talking to you you people with Rehabilitative Ultrasound Imaging - I guess you have to justify the cost somehow :) )  We may just need to address the patient's pain, their beliefs, their attitudes, their activity levels and their habits and we will get changes in these functional outcome measures or we won't get changes in those outcome measures and we don't even need to.

These changes in how muscles work can definitely occur in the presence pain.  Where we are confused is correlation and causation. When did these changes begin in relation to onset of pain?  We have some suggestion that changing these motor control variables does not relate to improvements in symptoms (Mannion 2012).  So are these changes just a defense of the body rather than some defect?  They are assumed to be surrogates for stability but are they?

Maybe we should see them as secondary casualties in how our brain works.  The brain changes with pain.  Pain is an output of the brain.  So is motor control.  We can also see changes in swelling, heat, blood flow.  No one thinks that we have to address these secondary adaptations to help with back pain but we think we have to address the motor control or stability issues.  All of which can be secondary byproducts of the persistent pain experience rather than some original criminal mastermind of the patients pain.

 

What do I think my exercise prescription is doing

Breaking habits of motion, changing fear and building self efficacy

Directional preference, flexion intolerant, extension intolerant, activating neurotags etc. Patients have movements that hurt.  Sometimes they continually perform these movements and they keep hurting.  Maybe they were told that they were supposed to sit up straight, brace their spine, suck in their belly and always activate their lazy glutes.  And guess what, sometimes you have these patients relax, move their spine, sometimes slouch, sometimes put their feet up, stop worrying about their glutes and keep active and voila their pain feels better. Instead of "correcting" some stability problem we just gave the patient permission to move with a lot of variety.   We just broke a pain habit.

Sometimes, patients get pain with flexion and for some reason they keep doing activities that flex their spines and they keep having pain.  Sometimes, we suggest that they move the opposite direction, try to find a position of relief and every hour they arch backwards for a few weeks.  Then we slowly have them start flexing their back again (because we don't want them to be afraid of flexion, its what we are meant to do) and now they can flex their spine without pain.  Are these patient's spines any more or less stable? Did their tranny start firing earlier? Who knows, they have less pain.  They began to move differently than what they were previously doing and this helped.  We broke a habit, found positions of relief, built confidence that they could move without pain and transferred that confidence over to other activities.

In some patients you can give them a full spine stability program aimed at buttressing their entire spine. The exercises feel good when doing them.  The patient gets more confident.  They feel stronger and even their pain decreases.  Did their spine's stability become more robust? Maybe.  Is this what caused less pain?  Probably not.  You got this patient moving, maybe you caused exercise induced analgesia.  You put them in control and they felt better.  It probably helped if you didn't tell them there spine was unstable before you gave the exercises.

 

What is my point?

Keep it simple. Adam Meakins (A sport physiotherapists at http://thesportsphysio.wordpress.com/  wrote a simple tweet

 

"In physio you cant go wrong if u do the simple things exceptionally well & save the fancy crap for show offs & bullshitters #ROM #power etc "

This might encapsulate my treatment philosophy in all its foul mouthed glory.  While the body is extremely complex and the pain experience difficult to fully understand our interventions can be quite simple.  We are not car mechanics where we are tightening something or loosening something.  We just provide some input into the body.  The body and brain then decide what to do with it.

I still advise bird dogs, side planks, front planks, curl ups, squats and all the exercises that are in the traditional North American stability paradigm.  Sometimes, I even check to see if you someone can suck in their belly button without other muscles turning on and if doing that decreases the pain in their back when they move their leg.  Do I think that any stability changes occur and this is causing their pain to decrease?  NO. There are other reasons that these movements help.

Do I think that all those planks are creating rigidity in the spine.  Of course not, this is much too simplistic.  So what the hell do I do and what do I think I am doing.

My approach and my rationale

All of the following assumes I have ruled out the nasty stuff.

1. Educate about pain.  Don't catastrophize.  Explain the difference between tissue injury and pain.  Explain that we are meant to move and that pain is normal and is not some indication that they are falling apart.  Explain that their scary x-rays and MRIs are poorly correlated with their pain.   Explain that pain is so much more than just the tissues in their back and reassure them that they can do something about it.

2. Touch them with your hands:  Move them, push, pull, rub, crack, traction, distraction, compression. Whatever.  Manual therapy has some neurophysiological pain modulator effect.  Skip the bullshit explanation about the complexity of the SI joint having an upslip, downslip, a shear or flare or whatever.  You can't feel this and you can't correct it.  But using your hands can modulate the perception of pain and can change muscle and joint performance.  This gets your patients confident that change is possible.

3. Move meaningfully.  What is important to your patients?  Find some movement related goal that is important.  Figure out a way to do this.  Set small goals related to this movement and achieve them.  They might have pain during this task but they know that pain does not mean damage and that they can do it.  Don't hammer them into fighting through pain so that they feel "Wind Up" the next day.  But keeping pushing that pain threshold up.  Keep empowering them.

4. Stress the body.  This is where I use exercise.  I find a movement that is painful.  I figure out someway to modify that movement so that it is not painful (think Mulligan).  Train that movement.  Start to break the habit of pain.  Pain is a habit.  If we activate a pain neurosignature with certain movements we can sometime modify that movement so that that neurosignature is not activated.  Do this.  This is where "spine stability" exercises can come in.  Get them working their achey back in ways that don't cause pain.  This is awesome they train a painful area without experiencing pain.  This decreases the threat associated with movement, decreases kinesiophobia and changes how they think about pain.

5. Train harder: pick a movement that is kind of related to their painful site but does not hurt at all.  Train the hell out of this.  This can be build confidence in their body.  For example, they might have shoulder pain but they can deadlift.  What a great shoulder exercise.  You work your entire body, train the shoulder but experience no nociception.  Hammer this.

6. Address beliefs: we need to understand what our patients think about their condition and how that impacts their psychosocial profile.  If they have some serious catastrophizing, fear avoidance, depression, perceptions of injustice etc this shit needs to be addressed.

An opinion on motor patterns

I have seen "faulty" motor patterns and I have also seen them "corrected" by doing exercises that have nothing to do with retraining the supposedly faulty muscles.  If a motor pattern is corrupted this pattern is most likely corrupted at the level of the brain.  If I train some movement, modulate pain with some education or mobilization we often see changes in these motor patterns.  But I didn't change these as a mechanic.  There was no tweaking at a local level of "muscle imbalances".  We aren't bloody puppeteers The imbalances get "corrected" via other means.  Or they don't get corrected and my patient is pain free and I know that "muscle imbalances" can certainly be normal variations of your complex system.

So just remember this mnemonic: KISDAS.  Keep it simple Dumb AsS.

 

Future posts and questions for research

Corrective Exercise: this approach, besides being an unethical cash grab for CE dollars by some questionable organizations by making good intentioned personal trainers and physios feel insecure, has a number of assumptions about human function that we all need to question.  I also want to investigate it because it is an approach that I kind of use daily (see my defense here of the lowly clamshell) although I try to simplify it and pain neuroscience it up a bit.  And besides, isn't "corrective exercise" what every good coach or therapist does automatically? Find a deficit and improve it?  Anyways,  corrective exercise has a number of interesting things that we can look at and I don't think it is worth completely discounting.  Here are some areas I hope to address:

1. It assumes that there is an ideal way that the body functions.  I think this is everything most physios, trainers and coaches do yet our research is so piss poor.  I would love a catalogue of articles that attempt to categorize the best way to move.  We need to settle this debate once and for all.  The catalogue might just show exceptions and the huge variety that is acceptable.  It might show that their instances when it is best to move on way over another.  I know it is more complicated than just avoiding knee valgus, keeping a neutral spine, not letting 'global movers" shut down "local movers" and assuming that all asymmetry is evil.

2. It assumes that isolated testing (e.g single leg squat, prone leg extension, single leg glut bridge) gives us some insight into altered functioning.  It then assumes that the altered functioning in some isolated test actually correlates with assumed altered functioning during some more meaningful performance task (e.g running, deadlifting, squatting).  I wrote a PhD proposal on this area and you would be surprised how poor our tests are at actually testing anything we think they are testing and also correlating with functional activities. Guess what? Did you know that the quadruped rock back test coupled with spine rotation actually does not "lock out" the lumbar spine and only result in thoracic rotation?  Crazy.  Or that the thoracic spine has just about the same amount of rotation capacity as the lumbar spine.

3. Muscle activation?  Such a neat, simple and prevalent idea.  Training some small movement (e.g squeezing your glutes during a bridge) while "turn on" some muscle during another activity.  I would love to see this idea put through a simple experiment.  Flippantly, it again views the body as something that is so stupid.  Certainly worthy of some good research.

4.   I would love to see a series of blog posts look at altered joint kinematics (what a corrective post assumes it is correcting) and how these alterations correlate with changes in pain or improvements in function. My big hesitation with the corrective exercise approach is that it complicates things and does not seem to recognize the uncertainty that exists in human function. Further, corrective exercise assumes that there is a limited way to "correct" the dysfunction.  aka. you need the "correct" corrective exercises.  I would suggest that there are a multitude of exercises or approaches that can influence pain perceived to becoming from a joint and the resultant aberrant kinematics.  Anyone want to look at this topic?

5. Of course we could also talk about foam rolling.   It is interesting that there does seem to be a shift in the rolling world to get away from the idea of digging out knots and adhesions and focusing on the possible neural aspect for the treatment mechanism.  But fascia is still king in some circles and I can't fathom why.

I would guess that if we look at the biomechanics and motor control literature we would find that our treatments can be much simpler, we would have lots of variety and many approaches would be successful.  We would not have to have incredible complicated solutions to simple problems (avoid the Rube Goldberg trap of exercise prescription).

 

Happy new year!  Anyone interested in collaborating on blog posts please email.

 

What is a functional exercise for runners and athletes?

clamshell open
clamshell open

A recent discussion was sparked by Mike Reinold's thoughts on the Clamshell exercise. I found myself defending the lowly clamshell exercise for runners. I was discussing with other physios whether the clamshell exercise was less "functional" than a band walk exercise (where you put elastic bands around your knees/ankles and walk forwards, sideways or backwards).  I suggested that both were NOT (or equally) functional but agreed that both had their uses. I can tell  you, I convinced no one :)

The consensus against me was that the clamshell sucked and that the band walk exercise was superior.  I tried to argue that this might be true but  not because the Bandwalk was more functional.  We essentially just babbled back and forth with no resolution for 20 minutes. The problem was the word "functional".

What the hell do you mean by 'functional".

When I heard someone say the bandwalk exercise was more "functional" than the clamshell I immediately thought malarky.  Because my knee jerk reaction to hearing "functional" was my brain translating this to "movement specificity" or kinematic specificity.  Meaning the exercise you are training matches the kinematics (specifically the displacements or joint angle motion) of the athletic task (in this case running).

Using kinematic/movement specificity to judge a Bandwalk or a Clamshell was a no brainer.  In terms of function (using the kinematic specificity definition) they both suck.  No runner lies on their side and lifts their leg up (e.g. the clamshell) but no runner runs sideways with a bloody elastic band around their knees.

So lets define "functional"

My knee jerk translation of "functional" to being "kinematically specific" is a little narrow. Our discussion exposed this.  Function to me means that the exercise has some sort of relevance to the task the athlete hopes to accomplish.  Viewing it this way then exercises can be functional or relevant thru a number of different means:

1. Movement specific: this means the exercise task somehow looks like the athletic task it is trying to train.  This means your exercise has similar form (due to motor control) to the goal task.  Further more, it suggests that the neuromuscular recruitment pattern is similar to the exercises (e.g. muscle onsets, offsets, ratios etc) For example, squats are great functional exercise to get out of a chair.

2. Muscle or joint specific: this means the exercise is training similar muscles to the muscles that are being used in the goal task.

3. Velocity specific: this means if your goal task requires you to move fast than you should probably train fast.  Exercises are therefore "functional" if they lead to some sort of carryover to the goal task's speed demands.  We know that you don't actually have to move fast to get this carryover, sometimes just the intention to move fast will garner improvement

4. Movement direction:  if your goal task requires a lot of deceleration than you should probably train the eccentric loading capability during your exercise.  For a runner, you might think they have increased hip adduction during the impact phase of  running which occurs for less than 100 milliseconds.  Thus you should probably train this deceleration ability over that specific time frame for it to be functional.

5. Context: the exercise should be similar to the context of the goal task.  The context might the exercises relationship to gravity or even to a societal or performance context (e.g you train to shoot free throws while people are screaming at you).

So what is more functional the lowly clamshell or Bandwalks?

Trick question! You can't answer this.  There is no functional scoresheet.  The better question is what is more useful to the runner or athlete.   You have to be able to answer why  you are prescribing an exercise in the first place. What is your intention with each exercise? What do you hope to accomplish?  If you prescribe an exercise because it is "functional' than this is just begging the question. Functional isn't enough it has to lead to some specific gain.  And if you think it is functional why is it beneficial?

A case example in the limits of functional justification: The BandWalk

I think most people would argue that the Bandwalk is more "functional" for the runner because it appears to train the muscles used in running in a more similar manner kinematically and more of the muscles that a runner uses when they are running.

But does it really do this?  How much of the previous "functional" components does the band walk satisfy?

Movement Specificity: No runner runs with a band around their knee, they don't run sideways or backwards. On its surface it certainly isn't very similar in terms of joint angles and displacements.  If you think movement specificity is important or practice makes perfect than training a movement that is so dissimilar to running can't be justified in this manner.

Movement Direction: Lateral band walks do not train the hip abductors in the manner that they are used during running.  Eccentric control occurs over very short period under high impact loads when running.  Band walks are extremely dissimilar to this. They are slow. They have an external force that is extremely different to the force vectors that create joint torques during running.  We don't satisfy a movement specificity or even a velocity specificity argument.  Considering this is the Bandwalk still functional?

Context? The band walk looks better than the clamshell that is for sure.  The athlete is standing and shifting weight.  But are they standing a shifting weight like a runner shifts weight? Nope. Is just standing and having weight shift enough to make it functional?  Why not do dumbbell curls while standing and shift your weight back and forth.

Motor Control:  No way.  Doing bandwalks are nothing like the motor patterns used in running.  Timing would be way off, no impact, no feedforward activation of muscles to damp vibration, hardly any storage of elastic energy.  Do you think the "extensor paradox" occurs during a band walk.  Not a chance.  These two tasks are completely separate beasts.  There is no way you can argue you are engraining some motor pattern during the band walk to enhance running.

Is the BandWalk Garbage?

Nope.  It can certainly help runners.  I don't use it but I still think it is reasonable for a runner to train with it. Because it satisfies our simplest category of "function".  It trains a group of muscles that runners need.  These exercises build the capacity of those muscles and this probably transfers over to increased mechanical efficiency and maybe even some injury protection. However,  if you think that it is functional enough to actually change a runners form than you might end up getting some poor results.

The problem with this last justification for strength coaches and rehab people is that it is too simple.  As therapists we want to think that we have some special knowledge about special exercises.  We don't.  There are no special exercises.  Train hard, train smart, get strong, build power, build tolerance, build capacity, build endurance, build the ability to absorb load, dampen vibration, produce strength at all ranges etc.  Have a generalized, good all around program and you will probably have good results. Maybe through in some assessments to see where your athlete is lacking and then train the hell out of that and you will do better. But, there are no running exercises.  And that is what both the research suggests and gurus suggest.  Pick an expert in a field of strength and conditioning (powerlifting, olympic lifts, corrective exercise, pilates, yoga, core stabilizinationists etc) and they all swear by their success with runners.   They are all probably right.

OK, so is the clamshell better?

No way! The clamshell sucks most of the time.  I got started blogging a lot because of Mike Reinold's post on a research study in JOSPT that looked at EMG in the hip abductors. The clamshell was a touted exercise and  I hated it. I thought runners should never do it.  I thought it was remedial and "non-functional".  My comment is on Mike's site.

The clamshell works fewer muscles, has the person lying down, looks kinematically different than running and doesn't satisfy many of the functional principles I laid out earlier.  BUT, it does train some muscles substantially different than the bandwalk.  This is where it can be a useful exercise.

The clamshell sees the hip flex to 90 degrees and has the patient externally rotate the hip.  At 90 degrees, because of changes in the line of pull of many hip muscles (GMax, GMed, Piriformis) the only muscles that externally rotate the hip are the deep external rotators.  So training the capacity of these muscles might carryover to running.

I used to abhor the clamshell.  Then I started testing more runners with the clamshell. A number who tested strong in many positions would tremble during the clamshell.  Crazy, they had a lovely one leg squat, strong hip abduction but had trouble with 10 or 15 clamshells.  What does that tell me?  Such a massive deficit in function.  Would you suggest clamshells here or something to address that specific movement?  This seems like a case where I would suggest clamshells.  If a runner can't do them I would want to address that deficit.

But, do I want to see every runner doing them as part of a "functional" program. Of course not.  They suck for that.  This is a case a where the exercise prescription is "functional" because it addresses a specific limitation in a specific runner.

OK. What do you suggest?

I have no exercise that addresses all of the components of "Functional" but that's why runners should get a comprehensive program. If I have a bias I lean to training "Comprehensive Capacity".  This means you train runners like they are athletes.  Big multijoint-compound exercises that train strength, high load power (e.g cleans), low-load power (ploymetrics), variable range exercises and unilateral exercises.  The thing with the word "functional" is that is so broad to be meaningless to justify an exercise.  Choose exercises based on some other specific capability of the neuromuscular system you hope to improve.

The Key Question: Why are you training what you are training?

For runners, I only think that we are training the muscle, joint, tendon and nervous system's capacity to tolerate stress that running imposes.  This makes runners more powerful, mechanical efficient and may make them less injury prone although with hip abductor training the research is a bit dodgy.

Do exercises help change running form?

This is seems to be the underlying idea behind an exercise that kind of looks like running (eg. the clamshell).  That training in that manner will improve your running form.  But there is some evidence to suggest that this does not occur (Willy 2011). We probably aren't training form.  We aren't correcting the biomechanics of running by choosing certain exercises.  We aren't engraining some motor programs that carryover to running.  If you want to do any of these things you have to do that while running and with some form of feedback.  Our bodies are not puppets where muscles can be tightened or loosened to obtain some different posture or form. That is a motor control skill not something that changes with other exercises.

So why are you prescribing the exercises you prescribe for your runners?

Please let me know what other rationales are out there.  I don't think this brief article really addresses everything

Greg

PS

This discussion was also quite serendipitous.  I was just finishing a pictorial post of bunch of hip exercises that people can use for their patients.  The pictures are all high quality and the idea is that you download them and put them into handouts or your website and what not.

Hip Centricity: A pictorial of hip exercises

 Related Posts:

1. The relationship between functional tests and athletic performance: Part I – The single leg balance test.

2. Can we treat our patients like puppets? Changing posture through exercise?

3. Running Injury Prevention: What we know and more of what we don't

4. Runner's Strength: Some simple exercise videos for runners.

Basic Runner's Strength Training: Program One

deadlift-down.jpg
deadlift down
deadlift down

Audience: Runner's looking to start a simple resistance exercise program who still want most of their time spent running Background

You can justify strength training for runners via performance enhancement and injury prevention.  Surprisingly, the evidence for performance enhancement is much stronger than injury prevention.

Components of a Good Strength Training Program

You can do thousands of different training programs.  Don't let someone tell you they have the best one or there is one best exercise for you.  I recommend that all good programs build comprehensive capacity.  Meaning you want a program that trains everything (or close to it)...you don't want to neglect a movement, a body part or some function (e.g. speed, power, strength) in a year round program.  If your program satisfies this simple goal then it is a good program.  You might be a fan of pilates, exercise ball training, kettlebell training, TRX, Olympic lifts or Yoga.  All of these can help and can be part of your conditioning.

What I am recommending below is just one introductory component of a year round program that you can do for 10-15 minutes before or after your runs.

Why should runners strength train?

Performance Enhancement

We have a great amount of research showing that lower body strength training, power programs, plyometric work and even some simple "core" work can improve mechanical efficiency during running.  The reason for this is debatable.  It is unlikely that strength training programs that see athletes doing a few sets of  10-15 repetitions translate to improvements in our physiological endurance capabilities.  Yet somehow strength and power programs lead to increased efficiency.  One theory is that strength training may slightly increase our muscular and connective tissue stiffness or even train the nervous system to modulate such a change.  In other words, strength training builds a better spring and running is nothing if not built on good springs.  Runners bounce they don't push.

Don't worry about becoming muscle bound.  This won't happen.  Putting on muscle mass is difficult and and even if you do it won't lead to a loss of performance

Injury Prevention

This is something we have been recommending for years but in all honesty we actually have little published research linking strength training with decreases in injury rates.  Sure, poke around on the internet and you will read about runners with weak glutes, weak hip abductors (I'm guilty of this) and weak hips in general and how these deficiencies are linked with current injuries.  The rub is that this is just a link in time (i.e. a correlation) and we actually suck at predicting future injuries.  Regardless, it is scientifically plausible that if we can increase the tolerance to tissue loading via strength training in a  novel and different manner from how we normally load our tissues (e.g. running) then we might expect some increases in the resiliency of our tissues to the repetitive stresses associated with injury (disclaimer: chronic, persistent pain is a whole other mess).  If you are in pain, strength training is a novel movement.  This novelty can sneak under our pain radar and modulate the brain's production of pain and even help resolve a painful running "injury".

Warning: Runners often train like endurance athletes instead of just athletes.  You need to choose exercises that make you tired before 15 repetitions.  You need to struggle and you need to push yourself.  If you can do 30 squats then you need to either get under a barbell or do one legged squats.  You are training strength not endurance.  Push yourself goddamnit.

Last Caveat: The exercises that might become easy can then be performed as a warmup or as  cooldown.

Alright enough preamble.  Below is the program.

6 Exercise Program:  All exercises are coupled with another exercise

I use exercises in pairs (couplets) and sometimes in threes (triplets).  This called a superset.  It is more efficient and decreases the downtime associated with the rest you need between exercises.  The exercises that are usually paired train muscles or even sides of the body (front versus back, push versus pull).

When, how much, how often?

  • before or after your run
  • two to three sets of 10-15 repetitions (if you aren't tired at 15 reps than you have to find another exercise)
  • this can be performed 3 times per week

Couplet One: High Knee Drive to Squat

1high knee lift
1high knee lift

Standing High Knee Drive

Standing tall drive your knee upwards. Brace through your spine.  This exercise can be preceded by a front scale.

Another option is hold your hip flexed (knee above hip) and perform a 6 inch knee lift with the hip already flexed.

Use resistance: add tubing around your knee or perform this on a 4-way hip machine

deep squat
deep squat

Deep Squat

Thats it. Squat deep.  One option is to shift your weight back and forth once you get deep.

You can combine these exercises by squatting, driving up and driving your knee upwards.  Then drop back into the squat.

Tip: vary the speed

Tip 2: add weight

Couplet #2: Core Couplet

front bridge
front bridge

The most popular exercises on the planet.    Bridging or planking.  Whatever you want to call it.

These exercises you work your front, your side and even your back.

You can do these exercises separate from one another or you can roll from one hold to the other.

sidebridge feet
sidebridge feet

You can hold the positions for 2-3 seconds or go nuts and hold for 30 to 60 seconds.  You will get benefit either way.  Your goal is to feel tired.  When you feel that your form starts to weaken then you can wrap it up.

Options: lift a leg, rock up and down, roll a little bit

Couplet #3: Single leg squat to lateral birddog (aka birddog hip airplane)

one leg squat
one leg squat
birddog with leg out and hip dropped downwards
birddog with leg out and hip dropped downwards

Lateral Birddog Hipairplane: this exercise is a modification of the good old birddog where you lift your leg to the back and your arm to the front.  The modification sees you lifting your leg out to the side and then dropping your hip that has the knee on the ground out to the side.  You will feel increased pressure in the outside of the hip.  Let your other hip drop to the ground and then lift it back up.  To really stress things swing other leg side to side.

One leg squat: you can do this with your leg out to the side like in the picture or you can have your leg out back.  I recommend hinging forward at your hip and NOT trying to keep your trunk upright.  Let it bend forward to increase the strain on your butt.

Go through that circuit.  Twice.  Its easy, takes 10-15 minutes and is good for us runners who really only want to run but know we should do something else.  You can do this one day a week and on two other days make up your own strength couplets.  Or just do this 3 times a week but in 4-6 weeks you should mix things up.  Add some speed, more weight, different exercises...train variety build capacity.

Related Programs

1. Runner's Strength Videos

2. Patellofemoral Pain Rehab Sheets

3. Bridging Variations

4. Stu McGill's Big Three

5. Hamstring Tendinopathy Strength Training Videos: Hint not just for hamstrings

Running in the Backseat: A rationale for improving hip extension in runners

Poor hip extension is a favourite of boogeyman for all manner of back and leg injuries. I have reservations about its relevance to pain and injury in terms of how the hip flexors get tight and the relevance of regional interdependence to pain (see here and here). Yet, I do not completely ignore the possibility that hip extension limitations (or not using your available hip extension) can influence function...I just think its over-rated and over used. One area that limited hip extension is proposed to influence function is during gait.  Dr. Howie Dananberg has detailed this in his theoretical ideas about how functional hallux limitus (lack of big toe dorsiflexion) leads to lack of hip extension, which in turn causes a decrease in the stretch of the psoas, leading to the loss of passive muscle recoil (because no psoas stretch) to initiate leg swing during gait and and ultimately increases in stress on the lumbar spine that leads to pain. (see a review here and one from me here).  Another theory regarding running has been championed by Jay Dicharry which is slightly different and puts a strong emphasis on performance as well as the possibility of pain.

Jay Dicharry is a biomechanics researcher and physical therapist with a focus on running injuries.  He runs a gait biomechanics lab at the University of Virginia (blog here) and has published some excellent reviews (here) and original research in the area (here).  He has also a new book out on running injuries (here).  I am a big fan of how Jay explains running biomechanics and he does an excellent job in his book. In the book he proposes a possible mechanism where lack of hip extension may negatively influence runners.  Jay lays out an excellent case for how poor hip extension can compromise efficiency (I can get behind this) and may also increase injury risk (I'm still skeptical when anything comes to pain because of the complexity of the pain experience and the poor track record that biomechanics has in predicting pain but this is no fault of Jay Dicharry).

Theory in a Simplified Nutshell:  Limited Hip Extension causes Overstriding.

Jay describes the swinging leg as pendulum.  It has a front side swing (swinging forward to strike the ground) and a back side swing (backside mechanics that occur before the leg leaves the ground).  What Jay suggests is that if you don't have adequate hip extension the athlete will "sit back" while running and will have increased front side swing (see the picture above from www.goodguystri.ca).  In other words, the pendulum arc will be shifted to the front side and the runner will land with the foot too far in front of the centre of mass - aka: overstriding.  This problem will be compounded at increasing speeds when the athlete looks to increase their  stride length.

Jay suggests that running in the back seat leads to two things:

  • Increased metabolic cost associated with overstriding
  • Increased impact loading associated with overstriding

Lets look at these two in detail.

1. Increased Metabolic cost associated with overstriding

Two mechanisms may be at a play here:

a. Lack of hip extension loses passive energy return.   The muscle-tendon unit can be viewed as springs.  We use the passive energy that they store rather than merely actively contracting them.  The tendons store energy during impact (e.g. they start to stretch) and then they release that energy during the push off phase.  With limited hip extension it is suggested that the pendulum can not swing backwards past the dashed vertical line and the pendulum must then swing forward excessively.  Without the ability to swing backwards the runner doesn't have the time to release the energy that they stored during impact because they are not able to let their leg swing backwards.  

 

 

b.  Overstriding is inefficient and costs more muscular work.  When overstriding the center of mass of the runner increases its up and down motion.  This means we work harder to decelerate the mass during impact and absorption and then we work harder to accelerate the mass during the push off phase of running.  Further, with the ground striking leg being farther away from the body we are at a mechanical disadvantage for absorbing this energy.  Overstriding would then increase the load on the knee and may therefore predispose individuals to knee pain.

 

2. Increased impact loading associated with overstriding

                                            This one we have heard a lot and is the thrust behind shortening peoples strides, changing foot strike pattern, going barefoot or running in minimal shoes all in an attempt to decrease the rate of impact loading, collision force and joint loading when running.  The closer the foot is to the center of gravity at foot strike the less rate of loading and joint loads we can expect.  Heiderscheit (2011) published a recent paper showing  how manipulating stride length (decreasing it) can decrease ground reaction forces, braking forces and joint loading.  This is also the impetus behind Lieberman's work championing barefoot running - he contends that the combination of a forefoot strike and a foot strike closer to the body (i.e. what occurs with shorter strides which is proposed to  naturally occur when you run barefoot) decreases impact loading (a large review can be seen here).

 

Other kinematic consequences of limited hip extension

Not all runners with limited hip extension will end up "sitting in the backseat".  Some can increase their backside mechanics (the range of the leg swing backwards) by arching their back.  This is a common explanation we hear for the dangers of limited hip extension in runners and in all athletes or low back pain sufferers in general. In other words, if you don't have hip mobility you steal it from somewhere else (e.g. regional interdependence).  In this instance you get the range from your spine. Many authors have speculated that this increases ones risk for low back pain and for hamstring strains but again the data is not there.  However, if you are  having aches and pain with running this may be one area you could modify to modulate your pain response. Sometimes getting out of pain is just changing a habit, providing something new and different to our body (and brain) and you can feel less pain.

Critique and Comments

What I like about Jay Dicharry's opinions in this areas is that he has access to data and equipment that can support his views.  He is fortunate to have an impressive biomechanics laboratory and he mixes his clinical wisdom with the data is he is able to collect.  Questions/ideas that this theory presents to me are:

- how regularly does a reduction in hip extension lead to overstriding? Is it really the loss of hip extension that causes overstriding or are there other variables.

-if the pendulum arc is shifted forward this implies to me that there should still be enough time for the leg to load and store elastic energy because we haven't shortened the arc just shifted it forward with the overstride.  I could see how there is less time to load and store elastic energy if the actual foot contact time was reduced because of the necessity to take a shorter stride.

-this is still an unpublished hypothesis.  Like all theories of injury or performance it does need to go through rigorous testing.  I look forward to seeing these concepts tested and published.

-the vast majority of people (more than 90%) probably run slower than an 8 minute mile (5 minute kilometer). Strides are typically small and there is a plenty of ground contact time. With plenty of ground contact time the athlete would be able to release that energy.  With less speed there is less impact loading in general and this would provide a buffer for the slight increase in loading with the overstriding. I would question how relevant this is to contributing to injury - the simple biomechanical idea of increases loads being associated with injury is not well supported.  It is not a direct relationship.  In a runner with limited hip extension I would assume they have always had limited hip extension and this would have given them a lifetime to adapt.  Lots of individuals run with greater impact loads and joint loading (even at the same speed) and they may not be more prone to injury - this is even what happens when we age (see a quick review here)

 

-I don't doubt that people might show up with pain in their knees and also run while sitting in the back seat.  I also don't doubt that changing how they run (or stretching their hips) might be correlated with a decrease in pain.  Seeing these correlations often lead us to thinking that it is the biomechanics that cause the pain when it can be many other factors.  Last, even the act of changing the biomechanics can result in a resolution of pain but not because you changed the biomechanics.  It can merely be the act of change, setting a new contest for running, doing a relatively novel and what is assumed to be a threat free way to run that can result in less pain.

-with respect to Performance I have little say.  This is the most intriguing aspect to me.  I would love to see some research showing improvements in running economy following increases in hip extension.  Jay has laid out an excellent argument for how this style of gait is inefficient.  This is certainly something worth tinkering with in athletes who are pushing their limits.

 

 

The relationship between functional tests and athletic performance: Part I - The single leg balance test.

Background: Testing and assessing an individual is popular.  There is an old saying that if you aren't assessing than you are guessing.  The assumption here is that the tests and assessments you do are somehow relevant and meaningful yet I would suggest that the majority of tests and the information gleaned from them hardly change (10% ish) a therapeutic approach once you have heard your patients history. I can have a patient with knee pain and run them through 30 different tests and the results of those tests may hardly change my treatment.  Tests have to provide us meaningful information that we can do something with.What the hell am I talking about?

This blog post is the first of what I hope to be many posts that review the research on our physical tests of purported function.  We make a lot of assumptions about the tests that we commonly use in the clinic.  For example, someone might tell you that your hamstrings or psoas muscles is tight and this will cause you to be hyperlordotic (pelvic anterior tilt) during running.  Or you might hear that you suck at doing a squat and without being able to squat your form during other activities will suffer.  Ultimately, "failing" these tests can lead to you spending time doing lots of "corrective exercise" to fix a test.  This fix is assumed to help with function in other realms of activity.  I want to explore the assumptions behind the tests we use and then the purported fixes that follow.   Some of the topics I might explore:

- assessing tightness in a runner and whether or interventions influence running form

-  how strength training influences joint biomechanics/dynamic form

- how tests of static function relate to dynamic form (e.g. running)

- how simple dynamic tests (e.g. a squat) relate to dynamic form/joint biomechanics

- how measures of joint strength or ROM relate to dynamic form/joint biomechanics

- whether dynamic tests (e.g. a single leg squat) actually give insight into what they are supposed to be giving insight into (e.g. pelvic stability, hip abductor strength and a surrogate for hip control when running etc).

I have touched on these ideas in a number of other posts below:

- specificity of movement training (looks at our ability to change posture) (link here)

- the inability of tests to identify functional hallus limitis  (link here)

- weakness of the prone hip extension (Janda) test. (link here)

So here goes with a look at a common test for runners...

The Standing on one leg balance test is not a relevant test for Runners

Whoa, quick disclaimer.  This first post is an opinion as there is no evidence that specifically looks at this.  However, there is plausibility and I want to make the argument that being able to balance on one leg has nothing to do with the act of running.  This is a common test advocated by rehab professionals (many of whom I greatly respect and one has good book out on running biomechanics and injury here) looking to screen for deficits in function that are assumed to affect ideal running.  But I just don't see it.  It makes no sense to me so if you are reading this and think I am wrong please let me know.

The one leg balance test has you simply balancing on one leg with your eyes open or closed.   If you can't do it the assumption holds that you will be prone to injuries during running or you  may end up with some sort of issues with your running form.  The test is based on the idea that running is merely a succession of leaps through the air interspersed with balancing on one leg until the next leap.  I would respectfully suggest not.  Here is my reasoning:

1. The skill of running is completely different from the skill of one legged balancing. Running is not balancing on one leg as you are not static like you are during the balance test.  These two tasks are completely different. And we should not expect that one can be a surrogate for the other and reflects the same demands.  Our ability to balance is activity and context dependent.  I don't think we can assume that balancing skill in one task will carryover to another completely different task.  The same holds true for that crazy dead fad of doing squats on BOSUs or balance balls with the assumption that training this form of balance will carryover to the balance needs of a golfer or hockey player.  The latter is from Mars and the former is from Uranus.

                                                                   2. Static versus Dynamic Analogy

Running is dynamic.  You do not pause and balance on one leg.  Comparing one leg balance to running is like comparing the ability of a stationary top to balance on its point with the ability of a SPINNING top to balance on its point.  Suggesting that we need to be able to balance on one leg in order to run safely is like arguing that in order to ride a bike properly you have to be able to hop on the bike, clip in and then balance in place without moving.  I have been having my five year old do this for months before I will let her ride her bike and surprisingly she still can't ride a bike...and that bruised little monkey hates me for it.  (Obvious disclaimer: I am kidding).  But this example illustrates my point.  If it seems absurd on a bike then it is just as absurd on your feet.

Caveat of Ignorance

I reserve the right to change my opinion with new research or with fresh ideas.  I can also be convinced to think otherwise.  My mind is not as closed as my writing might indicate.  As a further hedge I also recognize that it is possible that some cross sectional study might come out and suggest that one leg balance is compromised in runners with knee/ankle/back/hip pain.  I don't doubt a correlation might exist BUT this does not imply that the decrease in balance ability is the cause of the pain.  This can merely be correlation.

Last, this does not mean that one leg balance training can not be beneficial for runners in preventing injuries or improving performance.  The act of doing one leg squats, one leg hops, hip airplanes, front scales and other great exercises could certainly improve your balance and would also change other aspects of muscle function.  In this case the improvements in balance could be secondary to other aspects of improved function that are the true drivers of improvement in performance and injury resilience.

Last point, honest- perhaps we over assess and our assessments change nothing in practice

What I think can be argued with this assessment test (along with many other tests) is that it just isn't necessary and is plausibly not valid.  If I am working with a runner or an athlete their conditioning program would be all encompassing and comprehensive.  This would include exercises that ultimately improve their balance along with other variables.  I don't need a rudimentary test to tell me to add these exercises.  I just need that human in front of me that tells me that they want to run and be an athlete.  I don't want to freak them out because of their shitty balance or advise against doing these wonderful exercises because they have great balance during a static, albeit not relevant to running test.